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E Q U I L I B R I U M  P R O B L E M  OF A N  E L A S T I C  P L A T E  

W I T H  A N  O B L I Q U E  C R A C K  

A. M. Khludnev  UDC 539.375 

Equilibrium problems of elastic plates having vertical cracks (cuts) have been thus far studied in 
sufficient detail [1-3]. In the present paper, the conditions of mutual impenetrability of the sides of an oblique 
crack in the Kirchhoff-Love plate are obtained, equilibrium problems of a plate are formulated, and the 
main difficulties that  arise in studying similar problems are discussed. As it turns out, the impenetrability 
condition for an oblique crack is of a nonlocal character in the sense that its expression for a given fixed point 
contains the values of plate displacements both at this point and at a point on the opposite side of the crack. 
This circumstance makes the impenetrability condition obtained substantially different from the corresponding 
condition for vertical cracks. In particular, unlike vertical cracks where the equilibrium conditions are satisfied 
at all points of the middle surface, the equilibrium conditions here are satisfied only in a region that is external 
relative to the projection of the crack surface onto the middle plate surface. This property of nonlocality is 
new in the theory of plates and can serve as the source of a number of new mathematical formulations of 
boundary-value problems. As for conventional approa~:hes to the description of cracks in elastic (and inelastic) 
bodies, the literature is extensive. 

In the present paper, we shall not discuss these approaches but simply note that they admit the 
possibility of mutual penetration of the crack sides [4-6]. The properties of boundary-value problems that 
arise in such cases were analyzed, for example, by Grisvard [7], Ohtsuka [8], Kondrat 'ev et al. [9], Oleinik 
et al. [10], and Nicaise [11]. From the viewpoint of boundary-value problems, it is important to emphasize 
that, in any case, the presence of cracks (cuts) in a plate leads to the appearance of nonsmooth components 
of the boundary. The approach considered in [1-3] differs from the traditional ones by the fact that it is 
characterized by boundary conditions in the form of inequalities at the crack sides. For an oblique crack, the 
situation becomes even more complicated, because the equilibrium conditions are affected by the opposite 
crack sides. In reality, this means that additional terms which incorporate the response of opposite sides 
appear in the equilibrium equations. These terms can be found only after the problem is solved as a whole. 

1. De r iva t i on  of  I m p e n e t r a b i l i t y  Cond i t i ons .  Let the middle surface of a plate occupy the region 
~/c -- ~ \ Fc, where ~ C R 2 is the bounded region with a smooth boundary F, and Fc is the smooth curve 
without self-intersections which lies in f /(see Fig. 1). The vertical cross section of the plate is shown in Fig. 2. 

The middle plate surface lies in the plane z = 0. The coordinate system (Xl, x2 , z )  is Cartesian and 
x = ( x l , x 2 ) .  

Let the crack surface q/ be described by the function z = (I)(x) (x e ~,I,). Here fLI, is the orthogonal 
projection of the crack surface [of the graph of the function z = ~(x)] onto the plane z -- 0. The normal to 

the surface z --- (I)(x) (x �9 ~#)  is denoted by n(x)  = ( - V ~ ( x ) ,  1)/~/1 + IV(I)(x)l 2. The chosen direction of 
the normal n(x)  determines the positive and negative crack sides, denoted by ~1/+ and ~ - ,  respectively. The 
curve rc is the intersection of the crack surface kl/ with the plane z -- 0. For simplicity, it is assumed that 
IVr # 0 (x �9 ~ ) .  

The projection ~ of the surface ~ can be naturally presented as a sum of two sets in accordance 
with the chosen direction of the z axis, namely: ~# = ~+ U fl~. We assume that  if a part of the surface 
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is projected along the positive direction of the z axis, the corresponding projection of this part is denoted by 
fl+, and the projection of a part of gt that is projected in the direction opposite to the z axis is denoted by 
flT~. In particular, the curve Fc belongs to both 12~ and 1~7~. 

The direction of the normal v = (vl, v2) to the curve Fc in the x plane is assumed to be chosen as 
indicated in Fig. 3. 

Let z E fl~. The orthogonal projection of the point x onto the curve Fe is denoted by V = Px (see 
Fig. 3). The sets 1~  are assumed here to be sufficiently small in the sense that the quantity y = P z  is defined 
unambiguously for each x E fl~. 

Recall that in the theory of Kirchhoff-Love plates, horizontal displacements depend linearly on the z 
coordinate [12]: 

w ( z )  = w - z W , ,  Izl < 2~. 

Here W = (wl ,w 2) and w are the horizontal and vertical displacements of the points in the middle plate 
surface, and 2r is the thickness of the plate. The vector of displacements of the points on the middle surface is 
denoted by X = (W, w) and X = X(x) (x 6 ~c). Not leaving the framework of the Kirchhoff-Love hypotheses, 
we express the displacements of the plate points at the crack sides r ~•  and derive the condition of mutual 
impenetrability of the sides. 

Let (x, z) 6 ~+ (x 6 f ~ ) .  In accordance with the Kirchhoff-Love formulas, the displacement vector 
at the point (x, z) is of the form 

x+(x , z )  = ( w + ( x ) -  ~vw+(~) ,w+(~)) ,  �9 ~ a~ ,  z = r (1.1) 
+ For the points (x, z) E ~ -  (x E f/~), the displacement vector can be found by the following formula: 

x- (~ ,  z) = ( w - ( y )  - ~ w - ( ~ ) ,  w-(y)  + Ix - ~ I ~  Ou / y = Px. (1.2) 

Formula (1.2) implies that the horizontal displacements at the point (x,z) E k~- (x E ~2~) coincide with 
those at the point (y, z) (y = Px), while the vertical displacements are different from those at the point (y, z) 
(y = Px) by the term Ix - y[Ow-(y)/Ou. 
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The condition of mutual impenetrability of cracks at the point (x, z) �9 r (x �9 f ~ )  is as follows: 

(X+(X, z) - X - (z ,  z))n(x)  >1 O, x �9 s z = ~(x).  (1.3) 

According to (1.1) and (1.2), substituting the vectors X+(x, z), we obtain 

(X+(X) - X- (y ) )n (x )  - (X+(Z) - X'~(y))n(x) >1 O, x e fY~, z = r  y = Px ,  (1.4) 

where 

x ' ( ~ )  = (w~( . ) ,  w~(.)); 
Ow~:(Ps) ) 

Here we used the following notation: O/Ov + =- O/Ov and O/Ov- =_ -O/Ov.  Note also that, according to the 
above definitions, y = Py for y E Fe. 

Similarly, if we consider the points (x, z) E ~4- (x E ~ ) ,  we can derive an impenetrability condition 
of the form (1.4). 

Indeed, let (x, z) E kO+ (x E f~) .  Then 

x + ( x , z )  = (W+(y )  - zVw+(u ) ,~+(y ) - l x  - yl~ x �9 ~7~, z=~(x ) ,  y=  Px. (1.5) 

Similarly, if (x, z) E @- (x E ~ , ) ,  then, in accordance with the Kirchhoff-Love hypotheses, 

X-(X,  z) = ( W - ( x )  - z V w - ( x ) ,  w- (x ) ) .  (1.6) 

Substituting the values of X+(x,z) from (1.5) and (1.6) into the impenetrability condition ( X + ( x , z ) -  
X-(x, z))n(z) >1 0 [x E f~,  and z = ep(z)], we have 

( x + ( y )  - x - ( x ) ) n ( x )  - ( x + ( y )  - x T ( x ) ) , , , ( x ) / >  o, x c ~7,,, z = ~ ( x ) ,  y = p x .  (1.7) 

Thus, the condition of mutual impenetrability of the sides of an oblique crack is described by inequalities 
(1.4) and (1.7), which are of a nonlocal character in the sense that along with the values of the functions at 
the point z, they contain those at the point y = P x  as well, the latter being taken at the opposite side of the 
crack. 

It is important to note the following circumstance. If a crack that is described by the surface z = ~(x) 
is transformed into a vertical crack that corresponds to the cylindrical surface x �9 Fc, -e <~ z <~ r relations 
(1.4) and (1.7) are transformed into the known impenetrability condition for vertical cracks [i-3]: 

I, = c (,s) [W(x)lu(x) >. L ~ J  

Here [V] = V + - V-  IV =t: correspond to the V values taken at the positive and negatives sides Fc with respect 
to the direction of the normal (Ul, u2)]. Indeed, in this case the normal n(x) is transformed into the vector 
(ui, u2, 0), and conditions (1.4) and (1.7) yield, respectively, 

[w(x)lu(x) >/z[W0(x)l~(x), x �9 re, -~ ~< z ~< 0; (1.9) 

[W(x) ]u(x)  ~ z[Vw(x)lu(x),  x �9 Fc, 0 <<. z <~ ~. (1.10) 

Evidently, condition (1.8) is equivalent to (1.9) and (1.10) [2]. 
Note that if the crack is partially oblique or partially vertical (see Fig. 4), the impenetrability conditions 

of its sides are of the form (1.4) and (1.10). 
Similarly, one can consider other cases of crack obliqueness, for example, the case given in Fig. 5. We 

omit the corresponding formulas here, because this is easily done using the above considerations. 
2. Fo rmu la t i on  of t he  Bounda ry -Va lue  P r o b l e m .  Exis tence  of the  Solut ion.  We shall consider 

the boundary-value problem of the equilibrium of a plate containing an oblique crack and prove the existence of 
the solution. We shall deal with the crack shown in Fig. 2. As is known, the mutual-impenetrability conditions 
of the crack sides have, in this case, the form of (1.4) and (1.7). Let, as before, X = (W, w) be the displacement 
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vector of the points on the middle  surface of the plate. We introduce the strain tensor of the middle plate 
surface 

~ij = ell(W), ell(W) = 2 \Ozj + ~zi (i,j = 1, 2) 

and the stress tensor 0.ij = 0 . i j ( W ) ,  i , j  = 1, 2, 0.11 = e l l  q-~P-~22, 0"22 ---~ ~22 nt'~-~ll, O'12 = (1 --~)~12, ~ = const, 
0 < a~ < 1/2. The  energy functional  of the plate is of the form 

H(X) = (I/2)B(W, W) + (ll2)b(w,w) - (f ,x).  

Here B(W, fV) = (0"ij(W), r 

b(w, ,b) = f (w**,b** + wyy~yy + aew**,l~yy + aewuy,.b** + 2(1 - a~)w,u,~,~,)di2c; 
tic 

the brackets (-, "/ denote integration over tic- 
We assume that f = (f l ,  f2, f3) E L2(12c). Let H(flc) = Hl,~ x Hl,~ x H2,~ where HS,~ 

is the closure of the set of smooth  functions, which are equal to zero near F, in the  norm HS(i2c). It is easy 
to see that  the set of functions from H(fl~), which satisfy inequalities (1.4) and (1.7), is convex and closed in 
H(fl~). We denote it by K.  

The problem of the equil ibrium of a plate with an oblique crack can be posed as a variational one: 

inf II(x ). (2.1) 
xEK 

The functional H is convex and differentiable in the space H(flc),  and, therefore, problem (2.1) is 
equivalent to the following inequality: 

x E K: H'(X)(2- X) >t O V2 E K, (2.2) 

where IF(X ) is the derivative of the functional II at the point X. 
By virtue of the inequalities b(w,w) >1 clito[l~,~c Vw E H2'~ and B(W,W) >>. c[[W[[~,~ VW = 

(wl ,w 2) E HL~162 the functional  H is coercive in the space H(~e), i.e., FI(x ) ~ oo HXI[//(n~) ~ oo. Since 
it is weakly semi-continuous from below, we conclude that  the solution of problem (2.1) [or problem (2.2)] 
exists. The solution will be unique. 

There is no difficulty in seeing that  in the region ~ \ tic,, the equations 

A2w =/3,  -0"qj(W) =/ i ,  i = 1, 2, (2.3) 

are satisfied in terms of distributions.  To verify this fact, it suffices to subst i tute  X + X into (2.2) as trial 
functions, where 2 = (I~,  tb) E C~~ \ ~ )  and X is the solution of problem (2.2). Indeed, this sfibstitution 
leads to the identity n'(x)(2)  = 0, = (W, e \ which means the validity of (2.3) in terms of 
distributions. 

Now let the point x be inner for the set ~ ,  i.e., there is a neighborhood U of the point x which 
belongs to ~ .  In the region fie, we choose a sufficiently smooth function 2 = (I~, tb) with a carrier in U 
and such that  (lTf+(z) - zV,b+(z) ,  fo+(z))n(z) >1 O, where z = ~(z)  and z E U. Then X + )~ E K, where X 
is the solution of problem (2.2). We subst i tute  X + ;~ into (2.2) as a trial function. We obtain the inequality 
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l'I'(x)(:~ ) ~> 0, which means that the equilibrium equations (2.3) are not, generally speaking, satisfied at the 
inner points 12~. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
01645). 
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